Особенности симбиоза и взаимоотношений грибов и растений

После установления симбиоза лесных деревьев с почвенными грибами и открытия микоризы вопрос о природе взаимоотношений, существующих между грибом и растением, непрерывно интересовал ботаников, лесоводов и других ученых, работающих в этой области.

Этот вопрос, представляющий большой теоретический интерес и практическое значение для лесоводства, решался по-разному в зависимости от типа микоризы, вида растения и гриба, от условий их роста.

Физиологические взаимоотношения между грибом и орхидеей или между грибом и злаком (в случае опьяняющего плевела) при эндотрофной микоризе очень хорошо сбалансированы. Гриб постоянно присутствует в семени злака, передается из поколения в поколение, питается за счет растений, не оказывая на него угнетающего действия. Такое взаимное приспособление двух организмов, при котором оба симбионта извлекают выгоду из жизни в сообществе, обозначают термином мутуалистический симбиоз. Например, гриб получает питательные вещества из орхидеи, а некоторые продукты его обмена веществ стимулируют цветение растения. При эктотрофной микоризе гриб своими разветвлениями мицелия в почве заменяет корню корневые волоски и усиливает усвоение из почвы воды, минеральных солей и азотистых органических веществ. От растений грибы получают углеводы и некоторые ростовые вещества.

В других случаях хорошо сбалансированное равновесие между симбионтами может быть нарушено и грибы начинают вести себя как патогенные организмы. Такого мнения о грибах-микоризообразователях, как о настоящих паразитах, придерживались ученые в ранние годы исследования микориз, когда было мало известно о возбудителях корневой гнили дуба и других древесных пород. В настоящее время только незначительное число ученых придерживается мнения о том, что микоризные грибы — настоящие паразиты, большинство же ученых считает грибы-микоризообразователи маловредными и даже безвредными потенциальными паразитами. Существует и такой взгляд на микоризу, по которому высшее растение считается паразитом гриба-микоризообразователя, что отмечается при переваривании мицелия гриба и использовании этих веществ растением в случае эндотрофной микоризы. Например, гастродия японская (Gastrodia elata) из семейства орхидных утратила хлорофилл и перешла на питание органическими веществами, которые получает из почвы через микоризный гриб (Armillaria mellea Quel). В этом случае высшее растение стало паразитом своего микоризного гриба.

Таким образом, во взаимоотношениях двух компонентов микоризы — гриба и растения — существует несколько типов: мутуалистический симбиоз, несколько различных стадий нейтрального кимбиоза и антагонистические отношения — паразитизм. В связи в этим некоторые ученые (Харли, 1963) рассматривают микоризу сак естественную непаразитическую форму длительного симбиоза с жизни облигатных паразитов. С другой стороны, тесная симбиотическая связь грибов с высшими растениями послужила основанием для утверждения некоторыми учеными (Райнер и Нельсон — Джонс, 1949), что микоризу деревьев следует рассматривать как особый случай взаимоотношений между компонентами фитоценоза. Одно несомненно, что в микоризе существует борьба между компонентами, противоположными по биологическим особенностям, борьба единства противоположностей, как это выражается с философской точки зрения.

Практическое значение микоризы для лесного хозяйства. Противоречия в теоретических исследованиях взаимоотношений компонентов микоризы послужили поводом для различной оценки роли грибов-микоризообразователей в практике лесного хозяйства и полезащитном лесоразведении. В этом вопросе выявились два противоположных взгляда ученых, занимающихся проблемой микоризы.

Одни ученые считают, что грибы, участвующие в образовании микоризы, не имеют никакого значения для жизни древесных пород, растения могут развиваться без микоризы, питаясь совершенно самостоятельно, как и всякие автотрофные растения. Этого взгляда, кроме сторонников паразитизма микоризных грибов, придерживались Тубеф (1903), Ноббе и Гильтнер (1898). Большинство других ученых придерживается иного взгляда и относят грибы-микоризообразователи к полезным для древесных пород организмам.

Многие авторы отмечают, что большинство наших древесных пород на своих корнях имеет микоризу и она играет существенную роль в их корневом питании, названном микотрофным питанием. Степень микотрофности и роль микоризы для разных древесных пород не одинакова. В связи с этим все наши деревья и кустарники по их отношению к микоризе разделены на три группы: деревья высокомикотрофные (дуб, сосна, ель, лиственница;, слабомикотрофные (береза, клен, осина, липа и тополь) и немикоризные (бересклет, боярышник, бузина).

Микориза, как правило, благоприятствует почвенному питанию высших растений, особенно в условиях почв, питательный режим которых для этих районов неблагоприятен. Влияние микоризы выражается в усилении питания растений за счет растворенных грибом труднорастворимых неорганических и органических соединений в почве и увеличения всасывающей поверхности корней. Поглощающая поверхность разветвленных гиф гриба в эктотрофной микоризе в 1000 раз больше поверхности корневых волосков, благодаря чему резко увеличивается извлечение элементов питания, а также воды из почвы. Кроме того, микоризный гриб может снабжать высшее растение некоторыми физиологически активными веществами и ростовыми веществами. Существует точка зрения, что микориза защищает растение от инфекции патогенными микроорганизмами (Бьеркман, 1963).

Многие ученые указывали, что сеянцы древесных пород при отсутствии на их корнях микоризы отличались плохим ростом и развитием или совсем погибали. Например, А. А. Власов (1952) на основании полевых наблюдений писал, что немикоризные сеянцы дуба погибают к 2—4-летнему возрасту, а сеянцы с микоризой на корнях хорошо растут и не отпадают.

Таким образом, подавляющее большинство ученых как у нас, так и за рубежом проведенными исследованиями подтверждают положительную роль микориз в развитии дубовых сеянцев. Однако не все ученые разделяли такое убеждение, были и такие, которые оспаривали необходимость внесения микоризы в новых районах лесных посадок. При исследованиях микоризы в различных областях Советского Союза наши ученые обнаружили микоризу на корнях сеянцев дуба, выращенного в полевых условиях без внесения микоризных грибов (Власов, 1955; Зерова и Воробьев, 1952; Клюшник, 1952; Частухин, 1952, и др.). Советские ученые установили также, что микоризообразование наблюдается не только в почвах, удаленных от леса, но и в почвах, долгое время или совсем не находившихся под лесом (Власов, 1956; Зерова и Воробьев, 1952; Клюшник, 1952; Шемаханова, 1962).

Взаимосвязь грибов и растений

Роль микоризы в жизни растений

О существовании микориза — грибов живущих на корнях растений, известно уже довольно давно. Это явление – содружество, или симбиоз грибов и высших растений было открыто учеными в середине 19 века. Однако долгое время это оставалось просто известным фактом и только. Исследования последних десятилетий показали, какую громадную роль играет он в жизни растений.
Первые открытия были сделаны с помощью микроскопа, когда были обнаружены грибные нити, оплетающие корни растений. Микроскоп позволил увидеть и другой вид микоризы, который живет внутри корня, проникая и разрастаясь внутри корневых клеток. Первый вид был назван эктомикоризой, то-есть наружной микоризой. Он был найден на корнях почти всех древесных растений. Гифы гриба оплетают корень, образуя сплошной чехол. От этого чехла тянутся во все стороны тончайшие нити, пронизывая почву на десятки метров вокруг дерева. Те грибы, которые мы собираем в лесу, — плодовые тела эктомикоризы, в которых образуются споры. Их можно уподобить подводной части айсберга.

Второй вид микоризы – эндомикориза, то-есть внутренняя микориза характерна главным образом для травянистых растений и в том числе для большинства культурных растений. Она гораздо более древнего происхождения.

На одном растении часто можно обнаружить оба вида микоризы.

Гриб сопутствовал растению на всем протяжении его наземной жизни. Даже, когда у растений появились корни, гриб не оставил его, помогая добывать элементы питания из почвы. В настоящее время только единицы растительных видов обрели независимость и сумели обходиться без микоризы. Это ряд видов из семейств маревых, капустных и амарантовых. Собственно, не совсем ясно, зачем нужна эта независимость, так как микориза во много раз увеличивает поглотительную способность корней.

Гифы гриба более, чем на порядок тоньше корневых волосков и поэтому способны проникать в тончайшие поры почвенных минералов, которые имеются даже в каждой отдельной песчинке. В одном кубическом сантиметре почвы, окружающей корни, общая протяженность нитей микоризы составляет от 20 до 40 метров. Нити грибов постепенно разрушают почвенные минералы, добывая из них минеральные элементы питания растений, которые не находятся в почвенном растворе, в том числе такой важный элемент как фосфор. Микориза играет очень существенную роль в снабжении растений фосфором, а также рядом микроэлементов, как например цинком и кобальтом.

Понятно, что растение не скупится и хорошо оплачивает эту службу, отдавая микоризе от 20 до 30% усвоенного им углерода в виде сахара.

Дальнейшие исследования принесли еще более неожиданные и удивительные открытия относительно роли микоризы в растительном мире. Оказалось, что нити грибов, переплетаясь под землей, могут осуществлять связь одного растения с другим путем переноса и обмена органических и минеральных соединений. Совсем новым светом осветилось представление о растительных сообществах. Это не просто растущие рядом растения, но единый организм, связанный в единое целое подземной сетью многочисленных тончайших нитей. Было обнаружено нечто вроде взаимопомощи, когда более сильные растения подкармливают более слабых. Особенно нуждаются в этом растения с очень мелкими семенами. Микроскопический проросточек не смог бы выжить, если бы на первых порах его не взяла на свое попечение общая питательная сеть. Обмен между растениями был доказан опытами с радиоактивными изотопами.

Микориза помогает растениям переносить стрессы, засуху, недостаток питания. Ученые считают, что без микоризы величественные тропические леса, леса из дубов, эвкалиптов, секвой не могли бы противостоять неизбежным в природе климатическим стрессам.
Однако в сообществе растений так же, как в сообществе людей, неизбежны конфликты. Микориза обладает определенной избирательностью и если в сообществе растений распространился определенный вид микоризы, то это не значит, что он будет одинаково благосклонен ко всем видам растений. Предполагают, что видовой состав растительных сообществ во многом зависит от свойств микоризы. Некоторые, не соответствующие ей виды, она может просто выжить, не снабжая их питанием. Растения этого неугодного вида постепенно слабеют и умирают.

В естественных условиях микориза есть во всех почвах. Ее споры настолько малы и легки, что разносятся ветром на любые расстояния. В здоровом саду, где не злоупотребляют химикатами, микориза всегда присутствует в почве. Однако установлено, что высокие дозы минеральных удобрений и ядохимикаты, особенно фунгициды, подавляют развитие микоризы. Ее нет в почвах, лишенных плодородия в результате неумелого ведения хозяйства, в результате строительства, в почвах по той или иной причине лишенных гумуса.

Чтобы получить хороший эффект от микоризы, надо выполнить важное условие – перейти на органический метод земледелия. Это значит применять органические удобрения, не перекапывать почву (только рыхлить), мульчировать, отказаться от применения высоких доз минеральных удобрений и фунгицидов.

Как деревья дарят друг другу углерод?

Деревья не просто стоят — они объединены в сеть и обмениваются по нитям грибного мицелия углеродом. Но возникает вопрос: для чего?

Друг с другом деревья обмениваются углеродом, транспортируют они его по разветвленным мицелиям, соединяющим между собой их корни. Это продемонстрировали эксперименты с мечеными атомами углерода. Для чего нужен этот обмен, использующий симбиоз гриба и дерева? Приносит он больше пользы деревьям или грибам?

Деревья, как и большинство других видов наземных растений, получают углерод из воздуха через листья. Это углекислый газ, который они в процессе фотосинтеза перерабатывают с помощью световой энергии и воды в высокоэнергетический сахар, а затем метаболизируют. При реакции высвобождается кислород.

Исследователи, возглавляемые Тамиром Кляйном (Tamir Klein) из Базельского университета, представили результаты эксперимента, длившегося более пяти лет, в Science. В лесном массиве на северо-западе Швейцарии было маркировано двуокисью углерода в общей сложности пять елей.

Затем ученые проверяли, как этот углерод распределяется внутри дерева, и появился ли он у соседей. Оказалось, что даже у деревьев других видов — лиственницы, бука или сосны — ученые обнаружили меченые атомы. Они предполагают, что растения используют симбиоз грибов и соседних деревьев. Обмен происходит по мицелию в почве. В гифах (нитях грибницы) и даже в плодовом теле грибов исследователи нашли углерод.

Деревья поглощают питательные соли, а выпускают в почву углекислый газ

Мицелий служит обмену важных веществ: он дает растениям питательные соли из почвы, а взамен деревья дают грибам двуокись углерода. Специалисты называют эту форму симбиоза «микоризой гриба». Часто мицелий соединяет корни нескольких деревьев. Ранее не было доказано, что таким путем между деревьями переносится значительное количество углерода. Исследователи подсчитали, что до 40 процентов этого вещества, присутствующего в тонких корнях дерева, поступило туда от соседей.

Неясно, почему деревья обмениваются углеродом. Авторы предполагают, что они могут направлять его избыток в почву для роста грибов — и, следовательно, для собственного благополучия.

«Дальнейшие работы должны показать, получают ли деревья выгоду от распределения ресурсов и улучшила ли в процессе эволюции связь с помощью микоризных сетей здоровье и устойчивость растений леса».
Марсель ван дер Хейден (Marcel van der Heijden), Институт устойчивого развития наук (Institute for Sustainability Sciences), Цюрих

Симбиоз грибов с растениями и другими организмами

Способность грибов вступать в тесный симбиоз с другими организмами поистине уникальна. Ярче всего проявляется симбиоз грибов с корнями деревьев и других растений, результатом которого является микориза (в переводе с греческого – «грибокорень»). К слову, по этому же принципу паразитируют на древесных корнях и орхидеи. Не менее интересен симбиоз грибов и с различными видами насекомых: муравьями-листорезами, термитами, жуками-короедами и пилильщиками, осами и мухами.Группа грибов-симбионтов возникла в результате паразитизма, только такие грибы не губят своего хозяина, а вступают с ним в своеобразное «сотрудничество». От этого содружества выигрывает и гриб, и растение-хозяин.Ниже описано, в чем проявляется симбиоз грибов, и с какими организмами эти плодовые тела «сотрудничают» чаще всего.

Симбиоз грибов с корнями высших растений

Фото симбиоза грибов с корнями

Ярким примером симбиоза грибов является микориза — содружество грибов и высших растений (различных деревьев). При таком «сотрудничестве» выигрывает и дерево, и гриб. Поселяясь на корнях дерева, гриб выполнят функцию всасывающих волосков корня, и помогает дереву усваивать питательные вещества из почвы. При таком симбиозе от дерева гриб получает готовые органические вещества (сахара), которые синтезируются в листьях растения при помощи хлорофилла.

Кроме того, при симбиозе грибов и растений грибница вырабатывает вещества типа антибиотиков, которые защищают дерево от различных болезнетворных бактерий и патогенных грибов, а также стимуляторы роста типа гиббереллина. Отмечено, что деревья, под которыми растут шляпочные грибы, практически, не болеют. Кроме того, дерево и гриб активно обмениваются витаминами (в основном, группы В и РР).

Многие шляпочные грибы образуют симбиоз с корнями различных видов растений. Причем установлено, что каждый вид дерева способен образовать микоризу не с одним видом гриба, а с десятками разных видов.

Лишайники: в чем проявляется симбиоз грибов и водорослей

На фото Лишайник

Другим примером симбиоза низших грибов с организмами других видов являются лишайники, которые представляют собой союз грибов (в основном аскомицетов) с микроскопическими водорослями. В чем же проявляется симбиоз грибов и водорослей, и как происходит такое «сотрудничество»?

До середины XIX века считалось, что лишайники являются отдельными организмами, но в 1867 году русские ученые-ботаники А. С. Фаминцын и О. В. Баранецкий установили, что лишайники — не отдельные организмы, а содружество грибов и водорослей. От этого союза выигрывают оба симбионта. Водоросли с помощью хлорофилла синтезируют органические вещества (сахара), которыми питается и грибница, а грибница снабжает водоросли водой и минеральными веществами, которые она высасывает из субстрата, а также защищает их от высыхания.

Благодаря симбиозу гриба и водоросли лишайники живут в таких местах, где не могут отдельно существовать ни грибы, ни водоросли. Они заселяют знойные пустыни, высокогорные районы и суровые северные регионы.

Лишайники являются еще более загадочными созданиями природы, чем грибы. В них меняются все функции, которые присущи отдельно живущим грибам и водорослям. Все процессы жизнедеятельности в них протекают очень медленно, они медленно растут (от 0,0004 до нескольких мм в год), и так же медленно старятся. Эти необычные создания отличаются очень большой продолжительностью жизни — ученые предполагают, это возраст одного из лишайников в Антарктиде превышает 10 тысяч лет, а возраст самых обычных лишайников, которые встречаются везде, не менее 50-100 лет.

Лишайники благодаря содружеству грибов и водорослей намного выносливее мхов. Они могут жить на таких субстратах, на которых не могут существовать ни один другой организм нашей планеты. Их находят на камне, металле, костях, стекле и многих других субстратах.

Лишайники до сих пор продолжают удивлять ученых. В них обнаружены вещества, которых больше нет в природе и которые стали известны людям только благодаря лишайникам (некоторые органические кислоты и спирты, углеводы, антибиотики и др.). В состав лишайников, образованных симбиозом грибов и водорослей, также входят дубильные вещества, пектины, аминокислоты, ферменты, витамины и многие другие соединения. Они накапливают различные металлы. Из более 300 соединений, содержащихся в лишайниках, не менее 80 из них нигде больше в живом мире Земли не встречаются. Каждый год ученые находят в них все новые вещества, не встречающиеся больше ни в каких других живых организмах. В настоящее время уже известно более 20 тысяч видов лишайников, и ежегодно ученые открывают еще по несколько десятков новых видов этих организмов.

Из этого примера видно, что симбиоз не всегда является простым сожительством, а иногда рождает новые свойства, которых не было ни у одного из симбионтов в отдельности.

В природе таких симбиозов великое множество. При таком содружестве выигрывают оба симбионта.

Установлено, что стремление к объединению больше всего развито у грибов.

Симбиоз грибов с насекомыми

Вступают грибы в симбиоз и с насекомыми. Интересным содружеством является связь некоторых видов плесневых грибов с муравьями-листорезами. Эти муравьи специально разводят грибы в своих жилищах. В отдельных камерах муравейника эти насекомые создают целые плантации этих грибов. Они специально готовят почву на этой плантации: заносят кусочки листьев, измельчают их, «удобряют» своими испражнениями и испражнениями гусениц, которых они специально содержат в соседних камерах муравейника, и только потом вносят в этот субстрат мельчайшие гифы грибов. Установлено, что муравьи разводят только грибы определенных родов и видов, которые нигде в природе, кроме муравейников, не встречаются (в основном, грибы родов фузариум и гипомицес), причем, каждый вид муравьев разводит определенные виды грибов.

Муравьи не только создают грибную плантацию, но и активно ухаживают за ней: удобряют, подрезают и пропалывают. Они обрезают появившиеся плодовые тела, не давая им развиться. Кроме того, муравьи откусывают концы грибных гиф, в результате чего на концах откусанных гиф скапливаются белки, образуются наплывы, напоминающие плодовые тела, которыми муравьи затем питаются и кормят своих деток. Кроме того, при подрезании гиф мицелий грибов начинает быстрее расти.

«Прополка» заключается в следующем: если на плантации появляются грибы других видов, муравьи их сразу удаляют.

Интересно, что при создании нового муравейника будущая матка после брачного полета перелетает на новое место, начинает копать ходы для жилища будущей своей семьи и в одной из камер создает грибную плантацию. Гифы грибов она берет из старого муравейника перед полетом, помещая их в специальную подротовую сумку.

Подобные плантации разводят и термиты. Кроме муравьев и термитов, «грибоводством» занимаются жуки-короеды, насекомые-сверлильщики, некоторые виды мух и ос, и даже комары.

Немецкий ученый Фриц Шаудин обнаружил интересный симбиоз наших обычных комаров-кровососов с дрожжевыми грибками актиномицетами, которые помогают им в процессе сосания крови.

Симбиоз грибов и деревьев

Сожительство двух совершенно разных организмов – основа всей жизни. Большинство живых организмов не могут жить без мутуализма. Симбиоз гриба и дерева также распространенное явление. В его результате оба партнера получают пользу.

Симбиоз грибов и деревьев

Симбиоз

Взаимосвязь происходит между организмами разных видов. Связь обязательна в том случае, когда симбионты полностью зависят друг от друга, например лишайники; необязательной она бывает, когда растения и их «спутники»-симбионты могут жить раздельно. Симбионтом называют организм, что состоит в симбиозе. Существует несколько видов симбиоза:

  1. Паразитизм: отношения, в которых один участник союза причиняет вред второму. Он проявляется в эндосимбиозе, то есть одна особь живет в клетках, тканях другой или экзосимбиозе (один вид живет на поверхности тела другого).
  2. Мутуализм: тип взаимоотношений, в которых соблюдается межвидовой альтруизм или полная взаимосвязь.
  3. Комменсализм: вариант связи, в которой один симбионт получает выгоду, а другой не чувствует особого ущерба или помощи. Примеры подобного сожительства – паук, строящий паутину на растениях, рыбка горчак откладывает икру в раковину двустворчатых моллюсков.
  4. Аменсализм: форма существования, где определенный вид притесняет или уничтожает другой. Например, грецкий орех полностью истребляет все, что живет в пределах его корня и питается разложенными веществами.
  5. Синнекроз: редкий тип, в котором взаимовыгодная связь приводит к гибели обоих участвующих.

Подтверждено, что желание к объединению сильнее развито у грибов, имеющих четко сформированные надпочвенные плодовые тела. Симбиоз растений и грибов – яркий пример надёжного контакта двух биологических организмов. Эти уникальные эукариотические создания способны сотрудничать со многими другими. Например, грибы образуют связь с корнями многих организмов.

Связь с деревьями

Микориза, или грибокорень, является результатом симбиоза грибов с деревьями. Вступать в такой контакт выгодно обоим. Например, гифы подберезовика (или белого гриба) проникают в мелкие корни древесных организмов и располагаются между клетками. Так, благодаря взаимодействию с грибницей и образовывается микориза. Научно подтверждено, что отдельные виды деревьев создают ее во взаимосвязи с десятками разных грибов.

Ирина Селютина (Биолог):

В микологии выделяют такие виды микоризы, различающиеся по особенностям своего строения:

  1. Эктотрофная: гифы гриба просто оплетают поверхность молоденького корня растения, формируя микоризные трубки или своеобразный чехол. При этом гифы, проникая в ризодерму корня распространяются только по межклетникам, не затрагивая полость клетки. В случае формирования такого типа микоризы у растения атрофируются корневые волоски – их функцию выполняют гифы гриба. Также происходит редукция корневого чехлика – его аналогично заменяют гифы, сформировавшие свой «чехлик». В результате идет деление корня на зоны с формированием сети Гартига.
  2. Эндотрофная: гифы гриба проходят внутрь клеток коры корня через поры в их оболочках и формируют там скопления, напоминающие клубки. При этом снаружи корня микориза слабо просматривается.
  3. Эктоэндомикориза: представляет что-то среднее, сочетающее в себе признаки предыдущих видов микоризы.

Они удачно обмениваются между собой необходимыми веществами.

Лишайники могут жить до 100 лет

В союзе с грибницей деревья способны вырабатывать антибиотики, надежно защищающие организмы от бактерий и болезней. Например, грибница отдает воду, наполненную минералами для корневой системы, а дерево взамен поставляет сахар.

Связь с растениями

Симбиоз грибов с растениями, например, у лишайников, приводит к постоянному развитию, у организмов появляются новые функции. В середине XIX века было установлено, что эти группы тел являются единением водорослей и грибов, а не отдельных организмов, как было принято думать раньше. В этом союзе оба симбионта получают наибольшую выгоду.

Используя хлорофилл, водоросли образуют органическое вещество – сахар, которым питается грибница, что одинаково защищает от высыхания, и дает биологически значимые элементы. Эти и другие минеральные вещества она получает из субстрата.

Таким образом, благодаря симбиотическим связям лишайник может проживать как в жарких пустынях, так и в высоких горах или северных регионах. Их находят на самых разных поверхностях. Эти загадочные творения природы состоят из 300 соединений, включают в себя не менее 80 уникальных элементов. Симбиоз гриба и корня растения повышает продолжительность жизни лишайника. Предполагают, что существуют виды, возраст которых более 10 тысяч лет. Обычные лишайники, встречаемые везде, живут около 60-100 лет.

Существует связь между грибом и человеком. Это скорее аменсализм, чем взаимовыгодный обмен. Изготовление алкоголя на основе дрожжей, которые являются разновидностью грибов, длится уже не одно тысячелетие.

Симбиоз растений и грибов

Симбиоз растений и грибов уже существует 400 миллионов лет и способствует большому разнообразию форм жизни на Земле. В 1845 году был открыт немецкими учеными. Микоризные эндогрибы проникают непосредственно в корень растения и образуют «грибницу» (мицелий), которая помогает корням укреплять иммунитет, бороться с возбудителями различных заболеваний, всасывать воду, фосфор и питательные вещества из почвы. С помощью гриба растение использует ресурсы почвы на полную мощность. Один корень с такой задачей не справился бы; без поддержки грибов растениям приходится направлять дополнительные резервы на увеличение корневой системы, вместо того, чтобы увеличивать наземную часть. Микориза улучшает качество почвы, аэрацию, пористость, а объем общей поглощающей поверхности корня растения увеличивается в тысячу раз!

Из-за активного вмешательства человека в природные процессы: применение тяжелой техники, внесение химических удобрений, проведение строительных работ, прокладка трубопроводов, асфальта и бетона, загрязнение воздуха и воды, возведение дамб, обработка почвы, ее эрозия, т.д. — растения стали подвергаться невиданному ранее стрессу, их иммунитет ослабевает и приводит к гибели.

С научной точки зрения МИКОРИЗА является симбиозом (обоюдовыгодным союзом) между находящимися в почве грибами и корнями высокоорганизованных растений. Термин «микориза» (от греческого микес (гриб) и риза (корень)) был введен ФРАНКОМ (1885 г.) для описания связи двух различных организмов в образовании единого морфологического целого, когда растение питает гриб, а гриб – растение.

Различают два основных вида микоризы: эктомикориза и эндомикориза. Эктомикоризу формируют базидиальные и аскомицетные грибы преимущественно в лесах умеренного пояса. Этот вид микоризы очень важен для роста лесов. Некоторые деревья, например, пинакоидальные, образуют только эктомикоризу, и никогда не формируют эндомикоризу (грибковые структуры в корне и в его межкорковых слоях).

Самым важным видом эндомикоризы является так называемая арбускулярная (древовидная) микориза (АМ), получившая название от древовидных нитей, производимых АМ грибами в корковых клетках корней (рис. 1).

Не так давно грибы АМ были включены в новую грибную формацию Glomeromycota, которая содержит в настоящее время около 180 разновидностей. Все виды являются симбиотами – их можно выводить на корнях живущих растений. AM широко распространена в мире и представляет собой самый важный симбиоз — микоризные грибы присутствуют во всех экосистемах земного шара. Успешное развитие более 80% всех видов царства растений зависит от AM.

Споры АМ грибов в корне можно различить только после окрашивания – структуры гриба становятся голубыми и теперь их можно наблюдать и даже подсчитать их количество с помощью 50-ти кратного увеличения микроскопом и проходящего света (рис. 2).

Внешняя грибница корня отвечает за прием и транспортировку питательных веществ из почвы к растению, а внутренние структуры мицелия – за передачу питательных веществ от гриба к растению и продуктов фотосинтеза от растения к грибу. Везикулы — структуры,образуемые грибами, являются органами накопления гриба. Липиды, запасаемые грибом, используются им во времена дефицита фотосинтеза растения. Споры гриба формируются во внешнем мицелии, а иногда и в корнях . Споры долгое время могут жить в почве и служат ростками гриба. Для таксономического определения видов грибов часто используют морфологические характеристики спор. Эти отростки также являются мицелием гриба и грибными нитями внутри и вне корней. Компоненты гриба также могут жить достаточно долгое время, если защищены субстратами гранул или корневыми сегментами. Споры грибов развиваются при благоприятных условиях – определенной влажности почвы и температуре, и могут вступать в симбиоз с растущим корнем растения-партнера. Процесс роста и симбиотического формирования длится 1-7 дней. Микоризные препараты Микор-плюс содержат все три источника прививочных ростков.

Роль гриба в формировании единой массы почвы

Плодородные земли имеют высокий стабильный уровень влаги в почве. Грибы АМ могут связывать и укреплять компоненты почвы благодаря интенсивному развитию мицелия, внеклеточным полимерным составляющим грибовидных нитей и гликопротеинам, известных под именем Гломалин. Учеными доказано, что микоризные растения, растущие в песках, в пять раз больше связывают песок у корневой системы, чем растения со сходной биомассой, но без симбиоза с АМ.

Роль АМ грибов в поглощении растением питательных компонентов

Поглощение питательных элементов почвы растением в основном определяется всасывающей способностью его корня, распределением питательных веществ и соответствующим содержанием микроэлементов в почве. Поглощающая способность ионов с высокой мобильностью, таких как NO3-, зависит от видов растений, а ионов с низкой скоростью диффузии, например, P, Zn, and Mo, и в меньшей степени, K, S, and NH4+, зависит от плотности корня на объем земли. В последнем случае морфология корня и внешний мицелий в АМ гриба определяют скорость поглощения элементов растения.
Усиление поглощаемости питательных элементов микоризными растениями, в частности, фосфатов, нередко связывают с ускоренным развитием растения. Даже если надземная часть микоризного растения визуально не увеличилась в размерах, то его корневая система становится крупнее. У микоризного растения более сбалансированная система питания, которая укрепляет и поддерживает его в здоровом состоянии и увеличивает сопротивляемость биотическим и абиотическим факторам.
Увеличение ризосферы АМ
Одновременно с проникновением внутрь корней, АМ грибы развивают мицелий и вокруг корней. Внутренние и внешние гифы входят в контакт с десятком соединительных мест на одном сантиметре корня. В природных условиях соединительных мест может быть меньше. Внешний мицелий может под землей разрастаться и вширь (в эксперименте была выявлена удаленность гриба от корня растения на 8 сантиметров, и полагают, что это еще не предел).
Пока еще нет информации о плотности внешнего мицелия в АМ гриба в зависимости от его удаленности от корня; непрямые методы измерения предполагают, что плотность мицелия достигает максимума на расстоянии 0-2 сантиметра от корня. Вероятно, что плотность грибницы определяется самим грибом и зависит от факторов окружающей среды и почвы. В нетронутом тропическом лесу были обнаружены гифы АМ гриба длиной от 5- до 39 метров/мл, а в субтропической экосистеме дюн среднее значение составило 12 м гифов /г почвы. На одном сантиметре привитого корня униолы метельчатой насчитали 200-1000 м гифов АМ гриба, а грибная биомасса на один грамм сухого вещества тропической почвы составила 0,03-0,98 г.
Благодаря внешней грибнице контакт корня со средой, в которой он растет, значительно увеличился. Приняв во внимание, что 1 см корня без микоризы может взаимодействовать с 1-2 см объема почвы с помощью корневых волосков, можно потенциально рассчитать увеличение объема с помощью внешнего мицелия в 5-200 раз, рассматривая радиальное распространение гифов в АМ гриба вокруг корня. Увеличение ризосферического объема почвы до 200 см, является, скорее, исключением из правил, тогда как 12-15 см3 почвенного объема на сантиметр привитого корня – уже обычное явление.
Более того, мицелий АМ гриба оказался более устойчивым к абиотическим стрессам, таким как засуха, токсичность и кислотность почвы, чем сам корень. Растение в симбиозе с грибом остается в тесном контакте с почвой более длительное время, чем растение без подобного симбиоза. Продолжительность жизни внешнего мицелия неизвестна, но обнаружено, что процент активного внешнего мицелия резко уменьшается спустя 3-4 недели после первой прививки растения грибом.

Микор- плюс — инновационный продукт, экологически чистый натуральный препарат, органический регулятор роста растений. Микор- плюс представляет собой гранулированный микоризный препарат. Это споры эндомикоризных грибов (семейства Гломус), заключенные в 3-5 мм гранулы перлита (носитель).

Оцените статью
Село Да Ферма
Добавить комментарий

16 − пять =